2 research outputs found

    Single- and multi-photon excited fluorescence from serotonin complexed with B-cyclodextrin

    Get PDF
    The fluorescence of serotonin on binding with B-cyclodextrin has been studied using both steady-state and time-resolved methods. Steady state fluorescence intensity of serotonin at 340 nm showed ~ 30% increase in intensity on binding with Ka ~ 60 dm3 mol 1 and the fluorescence lifetimes showed a corresponding increase. In contrast, the characteristic green fluorescence (‘hyperluminescence’) of serotonin observed upon multiphoton near-infrared excitation with sub-picosecond pulses was resolved into two lifetime components assigned to free and bound serotonin. The results are of interest in relation to selective imaging and detection of serotonin using the unusual hyperluminescence emission and in respect to recent determinations of serotonin by capillary electrophoresis in the presence of cyclodextrin. The results also suggest that hyperluminescence occurs from multiphoton excitation of a single isolated serotonin molecule

    Formation of singlet oxygen from solutions of vitamin E

    No full text
    Vitamin E offers protection against oxidative stress and is an efficient quencher of singlet oxygen. A recent report suggests that photo-excitation of vitamin E results in the formation of a triplet state (Naqvi et al. Photochem Photobiol Sci 2, 381 (2003)). This leads to the possibility of the triplet state of vitamin E being able to sensitize singlet oxygen and if this is the case it would be counter productive in terms of the biological protective function of vitamin E. We report the production of singlet oxygen, detected by 1270 nm luminescence, from pulsed laser excitation (308 nm) of vitamin E and an analogue, 2,2,5,7,8-pentamethyl-6-hydroxy-chroman (PMHC), with quantum yields between ~0.1 and 0.2. The luminescence was identified as singlet oxygen from self-quenching by vitamin E with solvent-dependent rate constants similar to published values. Whilst the beneficial antioxidant aspects of vitamin E are well established, these results indicate that vitamin E when directly excited can sensitize singlet oxygen formation and may, therefore, be capable of inducing biochemical and biological damage. The results are discussed in relation to recent reports on the deleterious effects of vitamin E dietary supplementation and pro-oxidant effects of vitamin E
    corecore